
Noise effects on gap wave propagation in a nonlinear discrete LC transmission line

Serge Bruno Yamgoué,* Savério Morfu,† and Patrick Marquié‡

Laboratoire d’Electronique, Informatique et Image, UMR CNRS 5158, Dijon, UFR Sciences et Techniques,
Université de Bourgogne 9, allée Alain Savary, BP 47870, 21078 Dijon Cedex, France

�Received 25 September 2006; revised manuscript received 28 November 2006; published 16 March 2007�

We report here the results of numerical investigation of noise effects on the propagation in a nonlinear
waveguide modeled by a discrete electrical line. Considering a periodic signal of frequency exceeding the
natural cutoff frequency of this system, we show that noise can be used to trigger soliton generation in the
medium. Besides the classical stochastic resonance signature exhibited by each oscillator of the network, our
simulation results reveal in particular that the signal-to-noise ratio remains almost constant in the whole
network for an appropriate amount of noise. This interesting feature insures for the generated solitons a quality
preserved propagation along the network.
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I. INTRODUCTION

The counter-intuitive fact that noise may play a beneficial
role in some nonlinear systems’ dynamics was originally in-
troduced in the context of geophysical dynamics �1–3�. Like
the two other nonlinear features that are chaos and solitons, it
has then been progressively reported in a broad variety of
systems pertaining to different domains of science. Accord-
ingly, a continuously growing attention is currently devoted
to its investigation.

This phenomenon has been primarily studied in a model
consisting of a heavily damped particle embedded in a sym-
metric double-well potential, and subjected to a sinusoidal
driving �4�. When the amplitude of this force is weak �below
a critical value depending on the potential barrier� the par-
ticle can only oscillate in the well in which its motion is
started. It has been observed that, in this subthreshold situa-
tion, hopping of the particle from one well to the other can
be triggered and synchronized in a statistical sense to this
weak driving, by an optimal amount of noise �4�. This is
readily referred to as stochastic resonance.

Several models of nonlinear systems, still of single degree
of freedom, have subsequently been shown to exhibit sto-
chastic resonance features, according to some performance
measure which, usually, is the so-called signal-to-noise ratio
�SNR�. These include monostable smooth single-well poten-
tials �5–8�, excitable systems �9–11� and threshold devices
�12,13�. One and two dimensional arrays of such stochastic
resonators have also been considered, and the enhancement
of stochastic resonance �14� and of propagation have been
proven �8,15–18�. Stochastic resonance for biharmonic forc-
ing has also been studied �19�.

On the other hand, owing to the observation of solitons in
a variety of natural phenomena, including crystal lattice vi-

brations �20�, water and plasma waves �21,22�, and energy
transport in proteins �22�, to name just a few, solitons bearing
systems have attracted considerable attention from research-
ers for about half a century now. This interest is also moti-
vated by the potential applicability of solitons. As an impor-
tant example, soliton concepts have been used in optical
telecommunications to achieve spectacular progresses in
terms of transmission capacities �23,24�.

Thus, the stochastic resonance features just defined above
may undoubtedly be of great importance for information
transmission in telecommunications. Indeed, some attempts
to use stochastic resonance in data transmission field have
been recently reported �25–27�. However, neither the models
used in these recent studies nor those found in the stochastic
resonance literature in general, can be evidently deemed rel-
evant to this field. As a matter of fact, being almost of
reaction-diffusion type �i.e., overdamped systems�
�14–16,19,28–30�, these systems do not support such soli-
tons as those derived from the nonlinear Schrödinger equa-
tion which is yet the framework of nonlinear optical telecom-
munications �31�. It therefore seems more appropriate to
investigate model supporting nonlinear Schrödinger �NLS�
soliton rather than model of reaction diffusion type to reli-
ably establish stochastic resonance effect on data transmis-
sion field; which is the main aim of this article.

For this purpose, we consider a nonlinear discrete trans-
mission line with a pass-band dispersion relation, excited at
its left end by a sinusoidal driving whose frequency and
amplitude do not allow any information transmission. We
investigate how an additive noise can induce the generation
of a soliton in the nonlinear medium and thus allow the
transmission of the sinusoidal excitation.

The paper is organized as follows. In Sec. II, our model is
presented. The description of the numerical procedure and
the obtained results are developed in Sec. III. Moreover, us-
ing the probability of generating a soliton, the power spec-
trum and the SNR along the lattice, we also detail how noise
enhances the transmission of the sinusoidal driving. Finally,
Sec. IV is devoted to our conclusion.

II. MODEL

The system under consideration is one that has been stud-
ied extensively, both theoretically and experimentally by sev-
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eral authors �32–34�. It is modeled by the electrical nonlinear
lattice of Fig. 1, in which Ls and Lp are linear inductors while
Cb is a nonlinear capacitor. Applying Kirchhoff’s laws to the
array’s elements at sites n−1, n, and n+1; and assuming that
the capacitor-voltage characteristic of the nonlinear capacitor
Cb is

Cb�Vn� = C0�1 − 2�Vn + 3�Vn
2� , �1�

one can establish that the voltage Vn is governed by the fol-
lowing equation

d2Vn

dt2 + �0
2Vn + u0

2�2Vn − Vn+1 − Vn−1�

=
d2

dt2 ��Vn
2 − �Vn

3�; n = 1, . . . ,N . �2�

This equation, in which we have set w0= �LpC0�−1/2 and
u0= �LsC0�−1/2, models a nonlinear dispersive transmission
line. It is well known that in such media the dispersion �due
to the discreteness effects and to the natural gap induced by
�0� can be balanced by the nonlinearity to give rise to a
pulse-like wave called soliton; which propagates with con-
stant velocity and profile �35�. Indeed, without the onsite
nonlinearity, that is in the linear case, the pulse would spread
out and disperse as it propagates.

The array is driven at its left end by

V0�t� = A cos��t� + �0�t� , �3�

which corresponds to a sinusoidal signal of amplitude A and
pulsation � corrupted by an additive white noise �0�t�. In
this study, the noise is assumed to have a gaussian distribu-
tion and is characterized by its root mean square �RMS� am-
plitude �. Moreover, the numerical values used in this paper
for the linear capacitor, inductors and the nonlinear coeffi-
cients � and � are the same as in �32–34�, that is:
C0=320.0pF, Ls=220.0�H, Lp=470.0�H, �=0.21V−1, and
�=0.0197V−2.

In the noiseless case ��0�t��0� and for weak amplitude
driving A, the harmonic waves propagating in the network of
Fig. 1 present an angular frequency � and a wave number k
obeying to the following dispersion relation

�2 = �0
2 + 4u0

2 sin2� k

2
� . �4�

This dispersion relation is depicted in Fig. 2 and corresponds
to a typical bandpass filter, with a gap f0=�0 /2� and a cut-
off frequency fmax=�max /2�= ��0

2+4u0
2�1/2 /2� due to the

lattice effects. The numerical values of these frequencies are
f0=410.39 kHz and fmax=1267.93 kHz.

III. NUMERICAL PROCEDURE AND RESULTS

This section is devoted to the numerical investigation of
noise effect on the behavior of the network for sinusoidal
driving with frequencies exceeding fmax. The specific case
f =� /2�=1.01fmax is thoroughly studied when the two con-
trol parameters A and � are varied.

A. Numerical procedure

Our numerical simulations are conducted for an array of
N=1175 oscillators. We use the standard fourth order
Runge-Kutta algorithm �36�, with time step dt=T /512,
where T=2� /� is the period of the sinusoidal input signal.
The Gaussian noise is generated by using a pseudorandom
number generator in combination with the Box-Muller algo-
rithm �37�. To diminish the effects of waves reflection in the
system, we consider the so-called absorbing boundary at the
free end of the array as in Ref. �38�. This is simulated by

adding a viscous damping term ��n�V̇n to Eq. �2�; with

��n� = �0, 1 	 n 	 m;

a	1 + tanh�2n − m − N

2b
�
 , n 
 m . � �5�

The parameters m, a, and b are chosen such that the damping
coefficient ��n� varies progressively from zero to 2 on the
last 10% oscillators of the array. Also, the signal is smoothly
feeded into the array by considering

V0�t� = �1 − e−t/��„A cos��t� + �0�t�… �6�

instead of Eq. �3�; � being some positive constant that we
took equal to 30T.

FIG. 1. Schematic representation of the elec-
trical line.

FIG. 2. Graph of the dispersion relation.
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We perform up to 150 runs for each value of the noise
intensity �, starting the array always from rest, i.e., with
initial conditions

Vn�0� = V̇n�0� = 0; n = 1, . . . ,N . �7�

The integration time for each run is defined as Tmax
=N /vg���, where

vg��� =
1

2�
���2 − �0

2���2 − �max
2 � �8�

is the formal expression of the linear group velocity. We
deem this integration time long enough for our purpose since
it covers up to 2780 periods of the driving for the frequency
value considered herein. During this integration, the time
evolution Vn�t� for a few dozen of selected n are recorded at
evenly spaced intervals in time. Our sampling time �t is
computed in a way to get a total of 16384 data covering the
whole integration time defined above. Then, as in �19,28�,
the Fourier components of the spectrum of this time series at
the first two harmonics of the forcing frequency:

Pn
�k� = �Psin

�k��2 + �Pcos
�k� �2, k = 1,2, �9�

with

Psin
�k� =

1

T
�

0

T

Vn�t�sin�k�t�dt, Pcos
�k� =

1

T
�

0

T

Vn�t�cos�k�t�dt

�10�

are computed by standard FFT algorithm �37� and used to-
gether with the usual signal-to-noise ratio

RSN = 10 log10�Pn
�1�

pn
�1� � �11�

to characterize the response of our medium in presence of
noise. Here pn

�1� is the background noise power at the input
signal’s frequency and was estimated by simple linear inter-
polation �28�.

B. Results

We begin by providing in Fig. 3 the time series of the
typical structures obtained from the numerical integration of
Eq. �2�. Solitonic and nonsolitonic structures �Fig. 3�a� and
Fig. 3�b�, respectively� can clearly be distinguished in the
noisy case. Since the frequency of the input signal lies in the
linear gap of the system, one might wonder whether the gen-
eration of such a solitonic structure is a pure noise effect. We
recall that our model is known to sustain the propagation of
various types of soliton, including holes and pulses, when the
frequency of the input signal belongs to the allowed band of
the system. Their existence can be established as the solution
of a NLS equation derived from Eq. �2� by using the reduc-
tive perturbation method �32–34�. This fact and the ubiqui-
tous nature of the NLS equation in nonlinear physics, and
more specifically to the description of optical telecommuni-
cations �31,39�, have motivated our interest to the present
model and provide strong conjecture on the importance of
our investigation. For the case actually considered where the
input signal’s frequency belongs to the forbidden gap, recent
studies on discrete deterministic systems driven at one end
by a periodic signal have revealed that solitons can be gen-
erated if the signal’s amplitude exceeds some critical value

FIG. 3. Typical time series of �a� solitonic and �b� nonsolitonic
structures evolving in the array �cell 64 here�. Parameter values are
f =1.01fmax, A=1.9V, and �=5VRMS.

FIG. 4. Dependence of the probability of generating soliton on
the gaussian noise RMS amplitude � for various values of the sig-
nal amplitude and for f =1.01fmax.
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�38,40,41�. Until now, both Sine Gordon and Klein Gordon
chains as well as Fermi-Pasta-Ulam chains have revealed the
possibility to exhibit this so-called “supratransmission” phe-
nomenon. So, we have performed a preliminary numerical
investigation to determine this threshold of “supratransmis-
sion” in the specific case of our nonlinear discrete transmis-
sion line. For the frequency value f =1.01fmax considered
herein, we have then observed that no supratransmission oc-
curs for A1.9263V=Ath. Therefore noise essentially fosters
the occurrence of supratransmission in a parameter range
where it can otherwise not be observed. Note that the noise
effects on this so-called “supratransmission” is also without
doubt of interest for its expected engineering applications
�39,42�.

The influence of noise on the propagation of these distinct
structures necessarily needs to be distinguished. For this pur-
pose, the 150 realizations considered for each noise intensity
� were divided into two parts: one consisting of realizations
that generate solitonic structures and the other for those that
do not. The results presented in this article are obtained by
averaging the quantity defined in Eq. �9� over each part.
Based on the results of the analysis of sample structures like
that of Fig. 3�a� for different noise intensities, we define
solitonic structure by the condition that

max„V64�t�… � 4.5V . �12�

The choice of cell 64 in this definition is arbitrary; any other
cell sufficiently far from the input end to reveal almost only
noise effects, but also sufficiently close to that end to not
miss any of these features could well be used.

With these setup at hand, the first interesting measure to
quantify the effect of noise in our system is the probability of
generating solitonic structures which is represented in Fig. 4.
Note that, the probability of generating nonsolitonic struc-
tures is obviously the complement of that of solitonic struc-
tures, i.e., it is obtained by subtracting from unity. We can
notice that the probability first remains almost constant to
zero as � is increased from zero up to some critical value,
indicating that no or very few solitons are generated. Be-
tween this first critical value and a second one above which
solitons are guaranteed to be generated for each realization,
the increase of the noise intensity induces a rapid increase of
the number of generated solitonic structures. This gives the
probability curves the general profile of a staircase. Decreas-
ing the signal’s amplitude has the effect of shifting the criti-
cal values just mentioned to higher values.

FIG. 5. Averaged PSD for solitonic structures at different scales.
Parameter values are f =1.01fmax, A=1.9V, and �=9VRMS.

FIG. 6. Variation of the averaged PSD at cell n=64 as a function
of the gaussian noise RMS amplitude � for various values of the
signal amplitude and for f =1.01fmax. �a�: PSD at frequency f; �b�:
PSD at frequency 2f .
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We now focus our attention on the influence of noise on
the propagation process. We have deduced from Fig. 4 that
nonsolitonic structures are dominantly generated for rela-
tively weak noise intensities. However, our simulation results

�not presented here� have shown that no appreciable im-
provement of nonsolitonic structure can be obtained for this
range of noise intensity. In other words, the input signal is
completely attenuated as in the deterministic case. Therefore
we concentrate below on solitonic structures which, in fact,
are the most interesting. An example of averaged power
spectral density �PSD� for these structures is given in Fig.
5�a� and 5�b� in two different scales. We see from the first

FIG. 7. Variation of the averaged PSD along the array for sev-
eral values of the gaussian noise RMS amplitude �, for A=1.9V,
and f =1.01fmax. �a�: PSD at frequency f; �b�: PSD at frequency 2f .

FIG. 8. Variation of the SNR at cell 64 �RSN�cell64�� as a func-
tion of noise RMS amplitude for different signal amplitudes with
f =1.01fmax.

FIG. 9. Variation of the SNR �RSN� as a function of noise RMS
amplitude at various cells ��a� and �b�� and along the array �c� for
various noise RMS amplitude when A=1.9V.
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scale that at most only the first two harmonics of the signal
need be considered; while the second scale is necessary to
reveal the background noise.

We depict in Fig. 6 the variation of the PSD as a function
of the noise intensity for the cell 64. Both the first and sec-
ond components of the PSD exhibit the classic stochastic
resonance signature. The PSD increases with the increase of
the noise up to a maximum which, for A=1.9V for example,
is attained for �opt=9VRMS. Further increase of the noise
level introduces disorder in the system and thus leads to the
decrease of the PSD. We can also notice that a weaker maxi-
mum which is drifted to higher noises amplitudes is reached
when the signal amplitude A is lowered.

To show that this observation is not specific to the cell 64,
we plot in Fig. 7 the variation of the PSD as a function of n
for �opt and two other values taken on both sides of it. We
observe indeed that the relative order of the PSD correspond-
ing to different noise intensities is preserved down the array,
except very close to the input end. The optimum noise inten-
sity in particular remains the same in the whole network.

The quantifier that we have considered at last in the evalu-
ation of noise influence on the propagation is the well-known
signal-to-noise ratio. Figures 8 and 9 summarize its behavior
with respect to noise intensity as well as to the position in the
array. All the features observed from the analysis of the PSD,
including the existence of maxima with respect to � �Fig. 8
and Fig. 9�a� and 9�b��, the effect of decreasing the signal’s
amplitude on these maxima �Fig. 8 and Fig. 9�a� and 9�b��
and the fact that the relative order of the SNRs correspond-
ing to different noise intensities is preserved down the array
�Fig. 9�c��, are confirmed. Notice however that the maxima
for the SNR and the PSD are not attained for the same value
of �. In general the SNRs reach their maxima at smaller
values of the noise intensity than the PSD ��opt� =7VRMS for
A=1.9V�. This is the simple traduction of the known fact that
maximizing the output PSD with input noise do not guaran-
tee maximal quality of the output signal, since the output
noise might also increase with the input noise. It is particu-
lary interesting to point out here the variation of the SNR for
noise intensities less than or equal to the optimal one, with
the specific characteristic of being quasi-constant for, say, the
middle oscillators in the chain ��=5VRMS and �=7VRMS in
Fig. 9�c��. In contrast to the initial decrease of the SNR for

the first few oscillators near the input which has been re-
ported for arrays of overdamped oscillators �15�, such con-
stancy is related to the solitonic nature of the structures that
are being propagating in the array. The cell number at which
the SNR is minimum seems to be independent of the noise
intensity: it might then correspond to the position at which
the input signal would have completely died out in the ab-
sence of noise. From that point, the efficiency of noise shows
up and thus the SNR increases. Finally, the later decrease of
the SNR for oscillators sufficiently far from the input end
can be explained by the fact that they were not reached by
the solitons within our integration time.

IV. CONCLUSION

In this paper, we have numerically investigated the influ-
ence of noise on the transmission of a sinusoidal driving
exciting a nonlinear discrete electrical line. We have focused
specifically our study on the case where the input signal’s
frequency belongs to the natural gap of the line, so that with-
out noise the nonlinear medium do not allow the transmis-
sion of the input signal.

We have shown that the information transmission is then
possible adding an appropriate amount of gaussian noise.
Indeed, our investigation reveals that the stochastic reso-
nance phenomenon well studied for �array of� bistable,
threshold and neural systems also occurs in a class of non-
linear waveguides. Especially, we have numerically estab-
lished that noise can trigger the supratransmission phenom-
enon below its deterministic threshold with some probability.
The variation of this probability with respect to the input
noise amplitude is found to have a staircase profile. The
propagation of the resulting solitons, measured by PSD and
by SNR, presented remarkable resonant characteristics with
respect to the amplitude of the applied noise. We noticed in
particular the constancy of the SNR along the array for ap-
propriate noise, which implies quality preserving signal
transmission.
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